skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Abigail J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To combat the loss of species due to emerging infectious diseases, scientists must incorporate ecological parameters, such as temperature and humidity, to understand how the environment affects host–pathogen interactions. The fungal disease chytridiomycosis is a compelling case study to investigate the role of both temperature and humidity on infectious disease, as both the fungal pathogen (Batrachochytrium dendrobatidis, Bd) and the host (amphibians) are heavily influenced by these abiotic factors. We performed two experiments to investigate the importance of relative humidity and temperature on frog immunity (production of antimicrobial skin secretions) and disease development in captive golden frogs (Atelopus zeteki) of Panama. We found that the quantity of skin secretions significantly decreased over time in frogs moved from low to medium and high relative humidity treatments. FollowingBdexposure, frogs in high temperature (26–27 °C) and high relative humidity (80–90%) had lower pathogen loads and survived significantly longer than frogs kept in all other treatment conditions, including high temperature and low relative humidity. These results suggest that high relative humidity may be an important, although less understood, mediator ofBdinfection and the survival of golden frogs. Because the environment can drastically alter disease dynamics, understanding how temperature and humidity influence chytridiomycosis outcomes in golden frogs may be essential for the success of the reintroduction of captive frogs. 
    more » « less
  2. The immune equilibrium model suggests that exposure to microbes during early life primes immune responses for pathogen exposure later in life. While recent studies using a range of gnotobiotic (germ-free) model organisms offer support for this theory, we currently lack a tractable model system for investigating the influence of the microbiome on immune system development. Here, we used an amphibian species ( Xenopus laevis ) to investigate the importance of the microbiome in larval development and susceptibility to infectious disease later in life. We found that experimental reductions of the microbiome during embryonic and larval stages effectively reduced microbial richness, diversity and altered community composition in tadpoles prior to metamorphosis. In addition, our antimicrobial treatments resulted in few negative effects on larval development, body condition, or survival to metamorphosis. However, contrary to our predictions, our antimicrobial treatments did not alter susceptibility to the lethal fungal pathogen Batrachochytrium dendrobatidis ( Bd ) in the adult life stage. While our treatments to reduce the microbiome during early development did not play a critical role in determining susceptibility to disease caused by Bd in X. laevis , they nevertheless indicate that developing a gnotobiotic amphibian model system may be highly useful for future immunological investigations. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’. 
    more » « less